
Fundamentals of hypersonic flight - Properties of high
temperature gases

P.F. Barbante ∗

Politecnico di Milano, Italy
T.E. Magin †

von Karman Institute for Fluid Dynamics, Belgium

Contents

1 Introduction 3

2 Governing Equations 7
2.1 Continuity equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Species continuity equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Momentum equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Energy equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Mixture parameters and perfect gas law . . . . . . . . . . . . . . . . . . . . 9

3 Thermodynamic properties 11
3.1 Energy, enthalpy, specific heat . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Speed of sound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Chemistry 19
4.1 Equilibrium chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Nonequilibrium chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Air nonequilibrium chemistry model . . . . . . . . . . . . . . . . . . . . . . 22
4.4 Catalycity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Transport properties 29
5.1 Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Chapman-Enskog method . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 Diffusion flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.4 Heat flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4.1 Heavy particle heat flux . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4.2 Electron heat flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4.3 Eucken correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

∗barbante@mate.polimi.it
†magin@vki.ac.be

  

RTO-EN-AVT-116 5 - 1 

 

 

Paper presented at the RTO AVT Lecture Series on “Critical Technologies for Hypersonic Vehicle Development”, held  
at the von Kármán Institute, Rhode-St-Genèse, Belgium, 10-14 May, 2004, and published in RTO-EN-AVT-116. 



5.4.4 LTE heat flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.5 Stress tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 CFD example: OREX case 43

A Transport systems 49

Fundamentals of Hypersonic Flight – 
Properties of High Temperature Gases  

5 - 2 RTO-EN-AVT-116 

 

 



1 Introduction

It is well known that a fluid, in the most general case, is made of a mixture of atoms
and molecules. Air at ambient temperature, for example, is a mixture made of molecular
nitrogen, molecular oxygen, plus a small percentage of argon, carbon dioxide, neon, and
some other minor components. At moderate temperatures the gas behaves, with good
approximation, as a calorically perfect gas. Gas pressure (p), density (ρ) and temperature
(T ) are linked by the well known and simple state law: p = ρRT (where R is the so called
perfect gas specific constant). The gas specific heat are constant and internal energy
and enthalpy are linear functions of the gas temperature. Also viscosity and thermal
conductivity can be assumed to be constant, as a first approximation, or a simple power
law dependence on temperature can be assumed.

When Mach number rises and temperature too, this simple picture no longer exists:
new phenomena (so called high temperature effects) appear and the gas nature is drasti-
cally changed. We may grossly summarize such effects as follows:

- As temperature rises, the internal energy modes of the gas atoms and molecules,
that at room temperature are dormant, are excited. Specific heats, internal energy
and enthalpy are now nonlinear functions of the temperature. The specific heats
ratio, also called γ, is no longer a constant. For air, excitation of the internal energy
modes (vibrational) becomes important above temperatures of 500-800 K.

- As temperature further rises, chemical reactions can occur. Molecules dissociate
into atoms, new molecules are eventually formed, atoms and molecules can ion-
ize. Mixture thermodynamic and transport properties become functions not only of
temperature but also of the chemical composition.

- Thermal nonequilibrium can also occur: internal energy modes are out of equilib-
rium with respect to the translational one; we can say that they do not “share” the
same temperature. For example, when a fluid element crosses a shock wave, the
translational energy of the fluid particles is suddenly increased; but a high number
of collisions is needed to equilibrate the internal energy modes with the transla-
tional one (Park, 1990). Therefore, behind the shock, there will be a relaxation
region where the internal energy modes will try to “catch up” the translational one.
Another example is when the fluid experiences a strong expansion. In this case the
translational energy will rapidly decrease because of the expansion, but the internal
one will remain higher.

- Ionization can occur and the gas becomes a partially ionized plasma, with a finite
electrical conductivity. Therefore electromagnetic fields and associated forces, either
self-induced or applied from an external source (Peterkin and Turchi, 2000; Sutton
and Sherman, 1965), can act on the fluid, appreciably changing its behaviour with
respect to a neutral one. To make things more complex, an additional source of ther-
mal nonequilibrium appears because energy exchange between mixture components
and free electrons is highly inefficient due to the large mass disparity: in this case
the translational temperature of electrons can be different from the one of heavy
particles (Park, 1990).
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- At high temperature (above 10000-11000 K for air) radiation emitted and absorbed
by the gas can become important (Park, 1990) and eventually modify the energy
distribution in the flowfield. Radiation modeling is a formidable task (Park, 1990;
Sarma, 2000; Vincenti and Kruger, 1965), both numerically (a fluid element, a priori,
is influenced by and influences all the others) and physically (an adequate spectral
data base is required).

- Chemical reactions can take place not only in the bulk of the gas but also at the
surface of the vehicle, due to catalytic effects of the wall material upon surface
chemistry. Usually such reactions have the negative property of increasing the heat
flux experienced by the vehicle (Nasuti et al., 1996; Sarma, 2000).

We present now in a very qualitative manner two practical cases where high temper-
ature gases showing some, if not all, of the previously described effects are encountered.

High speed vehicles

It is well known that, when an aerospace vehicle travels at high speed through the at-
mosphere, a strong shock is formed in front of it. A major part of the kinetic energy of
the free stream flow is converted into thermal energy across the shock and therefore high
temperature is reached in the flow region between the shock and the body (the shock
layer). The intense friction happening in the boundary layer increases too the tempera-
ture triggering further chemical reactions. The high temperature effects can have a strong
impact on boundary layer stability and transition to turbulence. When the shock layer
temperature is high enough the gas can ionize: the free electrons absorb radio waves and
cause communication blackout to and from the vehicle. This is a serious problem and
an accurate prediction of the electron number density in the shock layer is important.
Emission and absorption of radiation can occur and, besides affecting the state of the gas
surrounding the vehicle, can raise the heat flux experienced by the vehicle itself. Radia-
tion from the hot vehicle wall to the ambient atmosphere can have a significant cooling
effect and must be taken into account in the thermal boundary condition (Sarma, 2000).

Ramjet and Scramjet engines

A Ramjet engine is essentially a duct where supersonic air is slowed down to subsonic speed
at the entrance of the combustor. Fuel is injected in the combustor, the mixture burns and
expands through the nozzle. Ramjets have advantages over conventional turbine engines
in the Mach number regime from 2 to 5. However, some design concepts of hypersonic
airbreathing transport vehicles assume a flight Mach number well in excess of 10 (an
example being the NASA X-43A). Under such conditions, if the incoming air is decelerated
to subsonic speed, it attains a temperature that is above the adiabatic flame temperature
of the fuel-air mixture burning in the combustor and therefore no combustion can take
place. A possible solution is to keep the incoming air stream at supersonic speed in the
combustor: in this way air temperature is kept below the flame adiabatic temperature and
combustion can take place. The major drawback is that the combustion has to take place
in a supersonic stream, leading to tremendous practical problems (flame stabilization,
efficient mixing and burning) that are still not solved nowadays.
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Lecture layout

In Sec. 2 we will recall the governing equations for a mixture of gases under conditions of
chemical nonequilibrium but thermal equilibrium. In Sec. 3 the thermodynamic properties
of each mixture component will be given. In Sec. 4 a short discussion of chemistry
and wall catalycity phenomena will be provided. Finally in Sec. 5 transport fluxes and
related transport coefficients will be discussed. Some examples of computations of high
temperature reacting flows will be provided in Sec. 6.
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2 Governing Equations

The governing equations are the mathematical expression of the physical principles of
conservation of mass, momentum and energy. They can be derived, for example, with
the control volume method, which is very general, not linked with a specific physico-
chemical model and therefore does not give the expression of all the terms in the governing
equations. The missing terms are provided by statistical mechanics and kinetic theory.
Statistical mechanics provides the thermodynamic properties (internal energy, specific
heat) and kinetic theory provides the transport properties (viscosity, thermal conductivity,
diffusion).

High temperature fluids are in general made of different chemical species; in the range
of pressure and temperature of interest here, each one behaves with good approximation as
a perfect gas. We make the key assumption that the gas can be described as a continuum,
i.e. there are always a sufficient number of molecules within the smallest significant volume
of the fluid and the macroscopic properties are given by average values of the appropriate
molecular quantities. We also assume that the gradients of the macroscopic variables (e.g.
density, speed, temperature) have a characteristic length L that is much bigger than the
mean free path λ. Defining the Knudsen number as: Kn = λ/L, the previous assumption
corresponds to: Kn � 1. The governing equations of such flows are the Navier-Stokes
ones and the transport terms (shear stresses, heat flux, diffusion fluxes) can be expressed
as functions of macroscopic quantities (e.g. density, velocity, temperature, pressure). It is
the failure to meet this condition which imposes a limit in the continuum equations. The
Navier-Stokes equations tend to become inapplicable for Kn > 0.03, and even when they
are approximately applicable, the usual no-slip boundary conditions are not any more
valid. More specifically, the relative flow velocity at a surface, which is usually assumed
to be zero, takes a finite value: this is called the slip velocity condition. In a similar
fashion, the temperature, which is usually taken equal to the surface temperature, now
becomes different: it is the temperature slip condition. A way to fix such a behaviour is
to use slip boundary conditions with the Navier-Stokes equations, an approach that has
been proven to be quite effective (Gupta, 1996a,b) and gives good results up to Kn = 0.1.
The error in the Navier-Stokes results is significant in regions of the flow where Kn > 0.1
and the continuum model has to be replaced by the molecular model for Kn > 0.2. As
already stated, the discussion presented in this lecture is valid in the continuous regime
and the slip effects are negligible.

2.1 Continuity equation

This equation simply expresses the conservation of global mass in the system. In Eulerian
differential form is written as:

∂ρ

∂t
+∇ · (ρ~v) = 0 (1)

where ρ is the mixture density and ~v is the mixture average velocity. If ρi is the partial
density of each mixture component, we have: ρ =

∑NS

i=1 ρi, where NS is the number of
mixture chemical species. If ~vi is the average velocity of each mixture component, then ~v
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is defined as:

~v =

∑NS

i=1 ρi~vi

ρ
(2)

2.2 Species continuity equation

The appropriate equations for each of the components must be established to compute
the mixture chemical composition. Partial densities are a natural choice and the species
continuity equations are then:

∂ρi

∂t
+∇ · (ρi~vi) = ẇi (3)

where ẇi is the chemical production term, i.e. the term that accounts for the rate of
production or depletion of species i due to chemical reactions. The average velocity for
species i, ~vi, can be written as:

~vi = ~v + ~Vi (4)

where ~Vi is the diffusion velocity for species i. A related term is:

~Ji = ρi
~Vi (5)

which is the diffusion flux and it plays a very important role in the framework of reacting
flows. Naturally, summing up all the species continuity equations, we have to recover the
global continuity equation. Indeed we have:

∑NS

i=1 ρi = ρ; and the chemical production

terms satisfy the property
∑NS

i=1 ẇi = 0. From Eq. (2) and (4) we can deduce an important
property of diffusion fluxes:

NS∑
i=1

~Ji =

NS∑
i=1

ρi
~Vi = 0 (6)

This taken into account we rewrite Eq. (3) under the form:

∂ρi

∂t
+∇ ·

(
ρi~v + ~Ji

)
= ẇi (7)

2.3 Momentum equation

The momentum conservation equation can be written:

∂ρ~v

∂t
+∇ · (ρ~v ⊗ ~v) +∇p = ∇ · ¯̄τ +

NS∑
i=1

ρi

(
~Fgi + ~Fei

)
(8)

where p is the mixture pressure, ¯̄τ is the viscous stress tensor, ~Fgi is a nonelectromagnetic

body force and ~Fei is the electromagnetic force, both acting on the species i. If the species
i is neutral the electromagnetic force is zero. ~Fgi reduces in the applications presented
here to gravity and is always neglected; this is justified because in our applications the
buoyancy effects are negligible. ~Fei arises because of the presence of electromagnetic fields
and has the form:

~Fei =
qi

mi

(
~E + ~Vi × ~B

)
(9)
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where mi is the mass of particle i and qi its charge. In the above equation, ~E is the
electric field and ~B the induced magnetic field. Usually Maxwell equations are needed to
compute the electric field and the induced magnetic field (Sutton and Sherman, 1965).
In the presence of a ionized mixture, when no external fields are applied one can suppose
that the magnetic field is negligible and the electric field is computed from the ambipolar
constraint, i.e. the diffusion current is zero in the flow:

NS∑
i=1

qixi
~Vi = 0 (10)

where xi is the molar fraction.

2.4 Energy equation

In compressible flows it is important to take into account both internal and kinetic energy
in the energy equation, because there is a strong coupling between the two, through
conversion of one energy type into the other (as, for example, across a shock, where
kinetic energy is converted into thermal energy).

The total energy conservation equation for the mixture is:

∂ρE

∂t
+∇ · [(ρE + p)~v]−∇ · (¯̄τ · ~v) +∇ · ~q =

NS∑
i=1

(
ρi~v + ρi

~Vi

)
·
(

~Fgi + ~Fei

)
(11)

where E is the total energy (per unit mass) i.e. the sum of the mixture internal and kinetic
energy: E = e + v2/2. The third term in the left hand side is the work of the viscous
stresses, the fourth the heat flux, the term on the right hand side is the work of the body
forces.

2.5 Mixture parameters and perfect gas law

The thermodynamic state of a mixture of perfect gases is uniquely defined once the
temperature T , the pressure or the density and the chemical composition are specified.
For most problems in aerodynamics it is indeed reasonable to assume that each species
is a perfect gas. Conditions that violates this assumptions are very high pressure (p >
1000 bar) or low temperature (T < 30 K), both of which are far from the typical conditions
met in aerospace applications. For each mixture component the equation of state linking
temperature T and partial density ρi and pressure p is:

pi = ρiRiT (12)

Ri is the specific gas constant that may also be expressed as:

Ri =
R
Mi

(13)

R is the universal gas constant, which is the same for all species (at least if they behave
as a perfect gas), Mi is the species molar mass, i.e. the mass of a mole of the species.
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Dalton’s law for perfect gases states that the mixture pressure p is equal to the sum
of the species partial pressures pi:

p =

NS∑
i=1

pi (14)

The same law is valid for the partial densities ρi:

ρ =

NS∑
i=1

ρi (15)

where ρ is, by definition, the mixture density. From Dalton’s law (Eq. 14) we infer that
once the temperature and the partial pressures pi of each component are known, the
mixture is completely specified.

Other quantities are suited to describe the mixture chemical composition:

- The mass fractions yi = ρi

ρ
(mass of species i per unit mass of mixture).

- The mole fractions xi (number of moles of species i per mole of mixture);

Both quantities satisfy the condition:

NS∑
i=1

yi =

NS∑
i=1

xi = 1

Mole and mass fractions can be used to compute mixture molar mass (M) and specific
gas constant (R) respectively:

NS∑
i=1

yiRi = R (16)

NS∑
i=1

xiMi = M (17)

The formula to convert mole fractions into mass fractions (and vice versa) is:

yi =
Mi

M
xi (18)

When using mole fractions one has to remember that the total number of moles in the sys-
tem does change due to chemical reactions; the total mass, however, remains unchanged.
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3 Thermodynamic properties

3.1 Energy, enthalpy, specific heat

Atoms and molecules have different modes to store energy and each mode is quantized,
i.e. it can only take discrete values (Anderson, 1989; Mayer and Mayer, 1946). In an atom
there are two energy modes:

- Translational energy mode: associated with the motion of centre of mass;

- Electronic energy mode: associated with the electrons orbiting around the nucleus.

For a molecule there are additional energy modes:

- Rotational energy mode: associated with the rotation of the molecule around or-
thogonal axes in space;

- Vibrational energy mode: associated with the vibration of the atoms of the molecule
with respect to equilibrium positions within the molecule.

Every energy mode can assume an ensemble of, in theory infinite, different discrete values,
or levels. Each level, in its turn, may manifest itself in a number of different ways
(degeneracy, gk

i , of the levels).
For a system of Ni particles of species i, distributed among an ensemble of k energy

levels, each of them with a different energy content, εk
i , the total energy Ei is:

Ei =
∞∑

k=0

εk
i N

k
i (19)

(with the constraint
∑∞

k=0 Nk
i = Ni). Every distinguishable arrangement of the Ni parti-

cles among the levels is a macrostate. A way of computing the possible macrostates is to
set up a differential equation for each level, an exceedingly complex task. To avoid such a
task one can look for the existence of a macrostate that is much more likely to occur than
any other. Indeed such a state does exists, it is called the most probable macrostate (or
the most probable distribution), its probability is overwhelmingly higher than the one of
other possible macrostates (Vincenti and Kruger, 1965) and it occurs when the system is
in thermodynamic equilibrium. The latter is a very important point because it restricts
the use of the most probable macrostate to conditions of thermodynamic equilibrium or
of slight nonequilibrium. The distribution of the particles over the different levels for the
most probable macrostate is given by:

Nk
i = Ni

gk
i exp

(
− εk

i

kBT

)
Qi

(20)

(kB being the Boltzmann constant). The quantity Qi is the system partition function and
is given by:

Qi =
∞∑

k=0

gk
i exp

(
− εk

i

kBT

)
(21)
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The power of the partition function lies in the fact that the thermodynamic properties of
the system can be determined from the partition function itself (Anderson, 1989; Clarke
and McChesney, 1964; Vincenti and Kruger, 1965). For example, the internal energy per
unit mass of species i is given by:

ei = RiT
2∂ ln Qi

∂T
(22)

Once the expression for the energy content εk
i of the different quantum states is known,

the partition function can be computed by means of Eq. 21 and the internal energy is
finally evaluated from Eq. 22. It is customary to express the level energies, εk

i , relative
to the value they assume at absolute zero (also called the zero-point energy or ground
state), so that the computed energy is not the absolute energy but instead the sensible
one. The total energy is thus obtained by addition of the zero point energy e0,i.

For perfect gases the translational and the internal modes are independent of each
other and the partition function can be factored into two separate contributions: Q =
QT Qint (where Qint belongs to the internal modes). In a real molecule the internal energy
modes are not truly independent of each other: the energy content of an internal mode
is affected by the state of the other internal modes (Mayer and Mayer, 1946). Therefore,
when computing Qint, the contribution of a single mode cannot be factored separately
from the others. However, for the simplest molecule model, which is the rigid rotator-
harmonic oscillator, the rotational, vibrational and electronic energy modes are considered
to be independent each other and the molecular partition function can be factored as: Q =
QT QRQV QE. (Subscript T refers to translation mode, R to rotational, V to vibrational
and E to electronic).

In agreement with the factorization property of the partition function, the internal
energy for an atom can be written as:

ei = eT,i + eE,i + e0,i

For a molecule the internal energy is:

ei = eT,i + eint,i + e0,i

Or, if all the internal modes are independent:

eint,i = eR,i + eV,i + eE,i

The translational energy is the same for both atoms and molecules and its value per unit
mass is:

eT,i =
3

2
RiT (23)

The electronic energy for atoms (and also for molecules when it can be factored) has no
simple expression and reads (per unit mass):

eE,i = Ri

∑∞
k=0 gk

Eiθ
k
E,i exp

(
−θk

E,i

T

)
∑∞

k=0 gk
Ei exp

(
−θk

E,i

T

) (24)
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gk
Ei is the degeneracy for level k, θk

E,i is the characteristic electronic temperature for level k.
The series in Eq. 24 diverges and has to be truncated. An empirical but effective criteria
is to take into account the strictly necessary minimum number of electronic levels that
produce a non-negligible change of energy in the temperature range of interest (Bottin
et al., 1999).

For a linear molecule behaving as a rigid rotator-harmonic oscillator, the rotational
energy per unit mass can be written as:

eR,i = RiT

(
1− θR,i

θR,i + 3T

)
(25)

θR,i is the rotational characteristic temperature and is usually equal to a few Kelvin, so
that the rotational mode is fully excited at temperatures considered here. The vibrational
energy per unit mass is, in its turn:

eV,i = Ri

∑
m

θm
V,i

exp
(

θm
V,i

T

)
− 1

(26)

θm
V,i is the vibrational characteristic temperature associated with the vibrational mode

m. The vibrational energy contribution is less than RiT and approaches this value when
T � θm

V,i.
The zero-point energy generally cannot be computed or measured; nevertheless it is

an important quantity. In a reacting mixture it is necessary to establish a common level
from which all the species energies are measured. In addition the zero-point energy is
linked with the energy associated with chemical bonds. Consider for example a certain
amount of nitrogen atoms; it is experimentally observed that, when they recombine to
form molecular nitrogen, some energy is released. If the recombination happens at the
absolute zero, the energy released in the chemical reaction (∆h0

F ) is equal to the difference
between the zero-point energy of the atomic nitrogen mixture e0,N and of the molecular
nitrogen mixture e0,N2 . If the reaction proceeds in the opposite direction, exactly the
same amount of energy is absorbed by the system: it is the heat of formation of atomic
nitrogen at absolute zero. From the point of view of the energy balance it is equivalent to
assume e0,N 6= 0, e0,N2 6= 0 and ∆h0

F = e0,N−e0,N2 or e0,N = ∆h0
F , e0,N2 = 0 and obviously

∆h0
F = e0,N − e0,N2 . Therefore it follows that the zero-point energy e0,i of species i can be

replaced by the heat of formation ∆h0
F,i of species i at the same temperature. The heat

of formation of the different species is available in literature (Chase et al., 1985).
The enthalpy is simply computed from the energy by addition of the extra term: RiT .
As previously mentioned, the rigid rotator-harmonic oscillator model for the molecules

does not truly represent the reality and so-called anharmonicity corrections can be used (Bot-
tin et al., 1999): they take into account the fact that the energy modes are coupled
together. Anharmonicity corrections often change appreciably the molecules internal en-
ergy. It should be noticed, however, that this effect is more pronounced above 6000 K,
a temperature at which, usually, molecules are highly dissociated. The correction has a
small effect on the mixture properties and can often be neglected.

The mixture energy and enthalpy per unit mass are obtained by means of the formulae:

e =

NS∑
i=1

yiei h =

NS∑
i=1

yihi (27)
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Enthalpy of Local Thermodynamic Equilibrium (LTE) air is shown in Fig. 1.
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Figure 1: Enthalpy of air at 1 atm.

Enthalpy of LTE carbon dioxide is given in Fig. 2. The negative value of enthalpy
at low temperature results of the exothermic formation of the CO2 molecule at 0 K (the
enthalpy of formation of carbon graphite and molecular oxygen gas is zero).
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Figure 2: Enthalpy of carbon dioxide at 1 atm.
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The single species specific heats are, by definition:

cv,i =

(
∂ei

∂T

)
v

cp,i =

(
∂hi

∂T

)
p

(28)

Both are functions of temperature only, as it is the case for the internal energy and the
enthalpy.

The specific heat for a mixture requires a little bit more care. Let’s concentrate on
the constant pressure specific heat cp, the same being valid for cv. From Eq. 27 and 28
we have:

cp =

(
∂h

∂T

)
p

=

NS∑
i=1

[(
∂yi

∂T

)
p

hi + yi

(
∂hi

∂T

)
p

]
(29)

If no chemical reactions are taking place in the flow (the mixture is frozen) the first
derivative is identically zero and we have the frozen specific heat:

cp,fr =

NS∑
i=1

yi

(
∂hi

∂T

)
p

=

NS∑
i=1

yicp,i (30)

In case of a frozen mixture, chemical composition does not change (yi is constant) and cp,fr

is function only of temperature: a frozen mixture is therefore a thermally perfect gas. If,
on the opposite, chemical equilibrium is established, the chemical composition is function
only of two thermodynamic variables, e.g. pressure and temperature or, yi = yi(p, T ) and
Eq. 28 becomes:

cp,eq =

NS∑
i=1

[(
∂yi

∂T

)
p

hi + yicp,i

]
(31)

In the intermediate case of a finite rate chemically reacting mixture, the chemical compo-
sition is function not only of two thermodynamic variables, but also of the position and
of the previous flow history. It follows that the derivative

(
∂yi

∂T

)
p

is not uniquely defined

and the only kind of specific heat that makes sense is the frozen specific heat cp,fr given
by Eq. 30.

Frozen and equilibrium specific heat of LTE air are shown in Fig. 3. Frozen and
equilibrium specific heat of LTE carbon dioxide are shown in Fig. 4.
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Figure 3: Specific heat of air at 1 atm.
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Figure 4: Specific heat of carbon dioxide at 1 atm.

3.2 Speed of sound

The speed of sound is by definition:

c2 =

(
∂p

∂ρ

)
s

(32)
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i.e. the derivative of pressure with respect to density at constant entropy. As for the
specific heats we can define two different speeds of sound (Anderson, 1989; Clarke and
McChesney, 1964): a frozen speed of sound cfr and an equilibrium speed of sound ceq.
The frozen sound speed is:

c2
fr =

cp,fr

cv,fr

p

ρ
= γfr

p

ρ
= γfrRT (33)

The equilibrium speed of sound is:

c2
eq =

cp,eq

cv,eq

p

ρ

1− ρ2

p

(
∂e
∂ρ

)
T

1− ρ
(

∂h
∂p

)
T

=
cp,eq

cv,eq

1(
∂ρ
∂p

)
T

(34)

When the flow is either frozen or in chemical equilibrium, there is no ambiguity on which
sound speed has to be used. In case of chemical nonequilibrium, disturbances with a period
(the inverse of the frequency) much longer than the characteristic time of the chemistry
propagate with the equilibrium sound speed, disturbances with a period much smaller
than the chemistry time with the frozen sound speed and disturbances with a period of
the same order as the chemistry time propagate with an intermediate speed (Clarke and
McChesney, 1964). This creates problems for the choice of the speed to use in a chemically
reacting flow computation.

The frozen and equilibrium sound speed are given in Fig. 5 for LTE air.
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Figure 5: Sound speed of air at 1 atm: −− frozen and equilibrium.

The equilibrium speed of sound is compared in Fig. 6 to the frozen speed of sound for
LTE carbon dioxide.
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Figure 6: Sound speed of carbon dioxide at 1 atm: −− frozen and equilibrium.
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4 Chemistry

4.1 Equilibrium chemistry

Let’s now recall the species i continuity equation (Eq. 3) and let’s put aside, for the
moment, the convective and diffusive terms. The equation reduces to the ordinary dif-
ferential equation (ODE) ∂ρi

∂t
= ẇi. Adding all the species we have a system of ODE’s

governing the evolution of the NS species. The system is, in general, nonlinear because of
the structure of the production term (Eq. 38). In a first approximation we can linearize
the system around a known state ρ0

i .

∂ρi

∂t
= ẇ0

i +

NS∑
j=1

∂ẇi

∂ρj

(ρj − ρ0
j) = ẇ

0

i +

NS∑
j=1

∂ẇi

∂ρj

ρj i = 1, . . . , NS

or, in compact form:
∂

∂t
{ρi} =

{
ẇ

0

i

}
+ [A] {ρi}

ẇi has dimensions kg/(m3s) and thus each element of the Jacobian [A] has dimensions
1/s and is an index of the characteristic time of chemical reactions. The element ∂ẇi/∂ρj

may also be seen as the sensitivity, due to chemical reactions, of species i with respect
to a variation of species j. For practical purposes, we can think of having only a global
value for the characteristic time of chemical reactions, instead of the NS by NS given by
the Jacobian. The norm of [A] (||[A]||) is taken as the desired value.

The next step is to compare a characteristic flow time (e.g. the time that the flow needs
to cross the region of interest) with the chemistry time. In order to do this the species
continuity equation (Eq. 3) is conveniently non-dimensionalised. We define a reference
length Lref , a reference speed vref , a reference density ρref and a reference chemistry time
1/τc = ||[A]||ref , the flow reference time being defined as τf = Lref/vref . The species
equation in nondimensional form reads:

∂ρ̃i

∂t̃
+ ∇̃ ·

(
ρ̃i~̃vi

)
= ˜̇wi||[A]||ref

Lref

vref

= Da1
˜̇wi (35)

(where the ˜ superscript indicates a nondimensional quantity). The quantity Da1 = τf/τc

is the first Damköhler number and it is a parameter of fundamental importance in the
study of similitude in reacting flows. By analyzing the previous equation we can define
the two following limiting cases:

• If τf � τc or Da1 → 0, the chemical reactions are negligible, the flow is called frozen
flow and the species continuity equations reduce to:

∂ρi

∂t
+∇ · (ρi~vi) = 0

• If τf � τc or Da1 →∞, the flow tends towards a state of local chemical equilibrium
and the species continuity equations tend to the limit

ẇi = 0
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In this case the chemical composition is uniquely determined by the local values of
p and T or ρ and T . The species continuity equations may be eliminated from the
system of governing equations and the chemical composition computed with an ad
hoc algorithm (Bottin et al., 1999; Anderson, 1989).

The computed equilibrium composition of air for Earth reentries and carbon dioxide
for Mars entries is shown in Figs. 7 and 8. The mixtures are defined as follows:

- An 11-species air mixture composed of N2, NO, O2, N, O, N+
2 , NO+, N+, O+

2 , O+,
and e−, with 79 % of nitrogen and 21 % of oxygen elements.

- An 8-species carbon dioxide mixture composed of CO, CO2, O2, C, O, C+, O+ and
e−, with 1/3 of carbon and 2/3 of oxygen elements.

The net charge is zero.
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Figure 7: Major components of air at 1 atm.

4.2 Nonequilibrium chemistry

We begin by considering an elementary reaction (identified with index r), i.e. a reaction
accomplished in one step only, which can be formally written as:

NS∑
i=1

ν ′irXi �
NS∑
i=1

ν ′′irXi (36)
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Figure 8: Components of carbon dioxide at 1 atm.

The species appearing on the left hand side are the reactants and the one appearing
on the right hand side the products; Xi is a dummy symbol for the species i, ν ′ir is
the stoichiometric coefficient of reactant i and ν ′′ir is the stoichiometric coefficient for
the product i. An elementary reaction r can proceed in both directions and is always
reversible; when there is perfect balance between dissociation and recombination the
reaction is in chemical equilibrium.

A typical example is the dissociation recombination of oxygen, which is an important
reaction for high temperature air chemistry:

O2 + X � O + O + X (37)

Molecular oxygen O2 collides with a third body X and dissociates in two oxygen atoms
O if the collision energy is enough to activate the reaction. In the reverse reaction two
oxygen atoms collide with the third body and recombine into one oxygen molecule if the
third body can carry out the energy released in the recombination. It should be noticed
that the third body does not change its chemical nature in the reaction.

In accordance with the Law of Mass Action and experimental evidence (Vincenti and
Kruger, 1965), the net rate of production of species i by the elementary reaction r just
introduced (Eq. 36) is:

ẇir = Mi

(ν ′′ir − ν ′ir)kfr

NS∏
j=1

(
ρj

Mj

)ν′jr

︸ ︷︷ ︸
production (forward) rate

− (ν ′′ir − ν ′ir)kbr

NS∏
j=1

(
ρj

Mj

)ν′′jr

︸ ︷︷ ︸
destruction (backward) rate

 (38)
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Here we have divided the expression for ẇir into a production term that goes from left
to right (in the reaction 37, for example, this corresponds to the creation of O from O2)
and a destruction term that goes from right to left (in the same reaction this corresponds
to the disappearance of O into O2). The rate of production (or destruction) of a sub-
stance is proportional to the product of the concentrations of the reactants raised to the
stoichiometric coefficient power, the proportionality constant being the reaction rate.

The number of elementary reactions is arbitrary and, if we have Nr of them involving
the species i, the production term for this species is obtained by summing over Eq. 38:

ẇi = Mi

Nr∑
r=1

(ν ′′ir − ν ′ir)

{
kfr

NS∏
j=1

(
ρj

Mj

)ν′jr

− kbr

NS∏
j=1

(
ρj

Mj

)ν′′jr

}
(39)

kfr is the forward reaction rate for the reaction r and kbr the backward reaction rate
always for the reaction r. This equation should be valid also at equilibrium and the two
reaction rates are linked by: kbr =

kfr

Kcr
, where Kcr is the equilibrium constant for the rth

reaction. This choice ensures that, if the flow approaches locally the chemical equilibrium,
the chemical composition is correctly computed. Kcr is linked with the Gibbs free energy
and for a perfect gas it is a function only of temperature. Referring to the elementary
reaction r (Eq. 36) Kcr reads (Anderson, 1989):

log Kcr(T ) = −
NS∑
i=1

(ν ′′ir − ν ′ir)ĝi(T )

RT
− log (RT )

NS∑
i=1

(ν ′′ir − ν ′ir) (40)

ĝi is the Gibbs free energy per unit mole of species i and is equal to ĥi−T ŝi, where ĥi and ŝi

are respectively the enthalpy and entropy of species i per unit mole. The same statistical
mechanics methods of section 3.1 are used to compute the Gibbs free energy. Two things
should be noticed: the first one is that there are as many equilibrium constants Kcr as
elementary reactions, the second one is that, since Kcr is a function of the thermodynamic
properties, its effective value is affected by the models used for the computation of these
properties. For example we can expect an effect of anharmonicity corrections.

It is possible to derive the forward reaction coefficient from kinetic theory, assuming
a known form for the interaction potential, the elementary dissociation-recombination
probabilities and the exact distribution functions. In practice this approach is not possible
because too much information is missing and a semiempirical formulation, the so called
Arrhenius formulation, is used to compute the forward reaction rate:

kfr = ArT
ηre

−Ed,r
kT (41)

Ar > 0 is a constant factor, ηr a positive or negative exponent and Ed,r is the so-called
activation energy for the rth reaction. It has to be noticed that such an expression is rigor-
ously valid only for thermal equilibrium. kfr is usually computed by fitting experimental
data. Large differences exist among various authors, with coefficients often differing by
one or more orders of magnitude.

4.3 Air nonequilibrium chemistry model

Air at ambient temperature is a mixture of molecular nitrogen (N2), molecular oxygen
(O2), argon (Ar), carbon dioxide (CO2) and neon (Ne) (plus some other minor compo-
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nents). The first two species are the dominant ones and, for all the applications of interest
here, air can be assumed to be made, in volume, of 79% N2 and 21% O2. As temperature
increases chemical reactions take place and the initial composition is profoundly changed.
At a pressure of 1 atmosphere oxygen begins to dissociate in a temperature range be-
tween 2000 K and 4000 K. The lower the pressure, the lower the temperature at which
the dissociation starts and ends. At 100 Pa oxygen is fully dissociated at 3000 K and
at 100000 Pa at 5000 K. Molecular nitrogen begins to dissociate by reaction with oxy-
gen atoms to produce nitric oxide NO (this happens above 2000 K) and then the main
phase of dissociation takes place between 3500 K and 8000 K. Nitric oxide ion NO+

starts to appear around 4000 K; O+ and N+ above 6000 K. Therefore, depending on the
temperature and pressure range, we can distinguish among three main mixtures models:

• When the degree of ionization is negligible; air is well represented by a five species
mixture (air-5): O2, N2, NO, O, N .

• When the degree of ionization is not any more negligible, but temperature is suffi-
ciently low; air is well represented by a seven species mixture (air-7): O2, N2, NO,
O, N , NO+, e−.

• When the temperature is higher than in the previous case; air is represented by an
eleven species mixture (air-11): O2, N2, NO, O, N , O+

2 , N+
2 , NO+, O+, N+, e−.

A suitable set of chemical reactions is needed to take into account all these phenomena.
In air we can have seven main groups of reaction (Park, 1990, 1993; Gupta et al., 1990)
that are detailed in Table 1.

• Thermal dissociation of O2, N2 and NO molecules by collisions with heavy particles
(i.e. all the species except the free electrons); a priori anyone of the heavy particle
species is involved (Park, 1993), but in some reaction models (Gupta et al., 1990)
only some of them are taken into account. Park (Park, 1990, 1993) considers for
the dissociation of N2 also the electrons as possible third body.

• Bimolecular exchange reactions involving NO: O2 + N � NO + O and N2 + O �
NO + N . They are the most important reactions for NO production and the latter
removes N2 from the system even more efficiently than the dissociation reaction.

• Associative ionization and its reverse dissociative neutralization. The first reaction
of this group in Table 1 is almost immediately triggered by the presence of N and
O atoms.

• Charge exchange reactions. NO+, N+
2 , O+

2 are created by associative ionization and
are converted into other ions. It is interesting to notice that, if the last group of
reactions (impact ionization) is negligible, atomic ion species cannot be generated
directly but only through charge exchange reactions.

• Heavy particle impact ionization. These reactions are present only in some reaction
schemes (Gupta et al., 1990) and they have very little effect, their activation energy
being very high.
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Thermal dissociation

O2 + X � O + O + X
N2 + X � N + N + X
NO + X � N + O + X

Bimolecular exchange

O2 + N � NO + O
N2 + O � NO + N

Associative ionization-dissociative recombination

N + O � NO+ + e−

N + N � N+
2 + e−

O + O � O+
2 + e−

Charge exchange

NO+ + O � N+ + O2

O+
2 + N � N+ + O2

O+ + NO � N+ + O2

N+ + N2 � N+
2 + N

O+
2 + N2 � N+

2 + O2

O+ + N2 � N+
2 + O

NO+ + N � N+
2 + O

O+
2 + O � O+ + O2

NO+ + N � O+ + N2

NO+ + O2 � O+
2 + NO

NO+ + O � O+
2 + N

Heavy particle impact ionization

O2 + N2 � NO + NO+ + e−

NO + X � NO+ + e− + X

Electron impact ionization

O + e− � O+ + e− + e−

N + e− � N+ + e− + e−

Table 1: Chemical reactions scheme for 11 species air (from Ref. (Gupta et al., 1990;
Park, 1993))
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• Electron impact ionization of N and O species. They have a very high activation
energy, but once they are triggered, they lead to an exponential increase of the free
electrons number density.

4.4 Catalycity

In a typical very high speed flight, the gas surrounding an aerospace vehicle is dissociated.
In such circumstances, atomic species can recombine not only in the boundary layer, but
also at the vehicle surface, thus releasing the reaction energy and increasing the thermal
load; therefore his effect should be taken into account when computing the heat flux
experienced by a flying vehicle.

A material can have different behaviours with respect to the recombination of atoms
impinging its surface. When the material surface is completely inert with respect to atomic
recombination we say that it is a noncatalytic wall, when, on the opposite, it promotes the
recombination of all the impinging atoms we say that is a fully catalytic wall. The latter
definition needs some more observations. We recall that a catalyzer promotes a chemical
reaction, but it does not alter its final state. In particular, a catalyzed reaction cannot
go beyond the local equilibrium conditions for the reaction itself. The definition of fully
catalytic wall as a wall that promotes the recombination of all the atoms impinging the
wall itself is, therefore, not correct and it would be better to define as fully catalytic wall
a material that, in the limit, allows a local gas composition equal to the equilibrium one.
In literature such a wall is often known as local equilibrium wall. When the material is
neither noncatalytic nor fully catalytic it is called a partially catalytic wall.

Many different types of elementary reactions are possible on a surface; a generic set,
valid on different kinds of materials, is as follows:

1. Atoms in the gas-phase can be adsorbed by a free active surface site or they can
leave the surface by thermal desorption. The adsorbed atoms are called adatoms.
The adsorption-desorption reaction is written symbolically as:

X + (S) � (X − S )

(S) is a free active surface site.

2. Atoms in the gas-phase can recombine with adatoms to form a molecule that leaves
the surface. This mechanism is known as Eley-Rideal (E-R) recombination.

Y + (X − S ) → XY + (S)

3. Adatoms migrate on the surface and recombine together in a molecule that leaves the
surface. This mechanism is known as Langmuir-Hilsenwood (L-H) recombination.

(Y − S ) + (X − S ) → XY + 2(S)

4. Molecules in the gas-phase can be adsorbed by a free site and released by thermal
desorption. This process usually does not contribute to the heat release, unless the
adsorbed molecule is highly excited and releases the excess of energy to the surface,
but it can modify the number of free sites and, therefore, the efficiency of E-R and
L-H reactions.
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5. Molecules are adsorbed on the surface and dissociated (dissociative adsorption): it
is in practice the reverse of the E-R and L-H reactions. This reaction can happen
for O2 molecule on metallic surfaces (Reggiani et al., 1996).

The final goal is to determine the rate of production or destruction of each species
due to the surface reactions by summing up over all the elementary steps: this gives the
heterogeneous wall reaction rate ẇi,cat (mass of species i produced or destroyed per unit
area and per unit time).

Next to the surface, the mechanism that feeds the i species from the bulk of the gas
to the surface itself is diffusion. Therefore, at steady state, the net amount of species i
produced or destroyed by catalytic reactions has to be balanced by the diffusion flux of
species i itself.

~Ji,w · ~nw = ẇi,cat (42)

(where ~nw is the normal to the wall, oriented from the gas towards the wall). This
expression is also the boundary condition for the species continuity equations (Eq. 3).

For practical applications the wall production rate ẇi,cat is often expressed in a sim-
plified form. The simplest one is to assume that a first order reaction is happening at the
wall. In this case, assuming that species i is recombining at the wall, the heterogeneous
wall reaction rate reads:

ẇi,cat = Ki,wρwyi,w (43)

Ki,w is the catalytic speed for species i (it has dimensions m/s). It is a global index that
hides completely every detail of the reactions taking place at the wall.

A more sophisticated approach is to define a suitable recombination probability. Let
M↓

i be the number flux of species i impinging the surface and Mi,rec the number flux of
i species recombining at the surface. The recombination probability γi is defined as:

γi =
Mi,rec

M↓
i

(44)

The flux impinging the surface isM↓
i and the flux leaving the surface isM↓

i −Mi,rec = (1− γi)M↓
i .

The net flux ~Ji,w ·~nw is equal to the difference of the two multiplied by the i species mass

and therefore to γimiM↓
i . From the last statement we deduce:

ẇi,cat = γimiM↓
i (45)

Kinetic theory provides an expression for the impinging flux M↓
i . Two different results

are possible, depending on the expression used for the particles distribution function at
the wall. If the Maxwell distribution is used the impinging flux M↓

i reads:

M↓
i = ni

√
kTw

2πmi

(46)

If the Chapman-Enskog perturbation term φi (see Sec. 5.2) is added it reads instead:

M↓
i = ni

√
kTw

2πmi

+
1

2mi

~Ji · ~nw (47)
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In the first case the wall reaction rate reads (we have used Eq. 42):

ẇi,cat = γimini

√
kTw

2πmi

(48)

In the second one:

ẇi,cat =
2γi

2− γi

mini

√
kTw

2πmi

(49)

The last two results are practically identical for γi � 1, but when γi → 1 the difference
is appreciable. In effect the right expression is the latter, because the wall reactions
perturb the distribution function making it non-Maxwellian and it is the expression that
has preferably to be used.

The expressions given in Eqs. 43, 48 and 49 show some inconsistencies. The first is
in the link between Ki,w and γi, that changes depending if we choose Eqs. 43 and 48

or Eqs. 43 and 49. In one case the relation is Ki,w = γi

√
kTw

2πmi
(known also as Hertz-

Knudsen relation) and in the other Ki,w = 2γi

2−γi

√
kTw

2πmi
. The other inconsistency is that

none of the above formulations gives a wall chemical composition that tends correctly
to the local equilibrium composition limit for a fully catalytic wall, i.e. Ki,w → ∞ and
γi = 1 respectively. The former condition implies yi,w = 0 and the latter yi,w equal to
a small, but finite, value that is, in general, different from the local equilibrium one.
This inconsistency, however, can be tolerated in our applications because the practically
sustainable wall temperatures allow only a negligible equilibrium atomic concentrations.
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5 Transport properties

Transport fluxes, i.e. diffusion flux appearing in the species continuity equations (Eq. 7),
stress tensor appearing in the momentum equation (Eq. 8) and heat flux appearing in
the energy equation (Eq. 11) are computed by the kinetic theory of gases (Chapman and
Cowling, 1970; Ferziger and Kaper, 1972; Giovangigli, 1999; Hirschfelder et al., 1964).

The kinetic theory approach we will present in the next sections is rigorously valid
under the following assumptions:

Kn � 1. As already mentioned in Sec. 2, the Knudsen number Kn being small, the
gas mixture is collision-dominated and the Navier-Stokes equations are the right
governing equations.

No chemical reactions. Ern and Giovangigli (Giovangigli, 1999) have shown that chem-
ical reactions do not influence the transport properties if the characteristic time for
chemistry is larger than that for collisions implied in transport phenomena. There-
fore, for the sake of transport property computation we assume the gas mixture to
be frozen.

No internal energy. The internal energy is not taken into account when deriving trans-
port coefficients. The influence of the internal degrees of freedom on transport prop-
erties is addressed in various specialized publications cited in general Refs. (Ferziger
and Kaper, 1972; Giovangigli, 1999). Indeed, a rigorous treatment including the
internal energy leads to transport collision integrals difficult to estimate with accu-
racy in high-temperature applications. As a matter of fact, the influence of internal
degrees of freedom on properties such as viscosity can be neglected. It is retained in-
stead for diffusion and thermal conductivity by means of a simple correction due to
Eucken (Chapman and Cowling, 1970; Hirschfelder et al., 1964; Ferziger and Kaper,
1972).

When the gas mixture under study is ionized we make the additional assumptions:

λD � L. The Debye length λD being smaller than a reference length L in the flow,
quasi-neutrality of the plasma is prescribed.

Λ � 1. The plasma parameter Λ is proportional to the number of electrons in a sphere
of radius equal to the Debye length. If the plasma parameter is sufficiently large,
charged particle interactions can be treated as binary collisions with Debye-Hückel
screening of the Coulomb potential using the usual collision operator of Boltzmann
equation (Delcroix and Bers, 1994).

ε =
√

me/mh � 1. Our gas mixture is composed of NS species. The electron mass
reads me. A characteristic mass for heavy particles is given by mh. This hypothesis
allows to simplify transport fluxes and transport coefficients evaluations.

|Te − Th| � Te ∼ Th. Due to the small electron heavy-particle mass-ratio, electron
temperature Te can differ from heavy particle temperature Th. The case of weak
thermal nonequilibrium is studied here. Thermal equilibrium formulation can be
recovered by setting: Th = Te = T .
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βe � Kn. The Hall parameter of electrons βe is assumed to be smaller than the Knudsen
number. Thus, the magnetic field influence on transport properties remains negligi-
ble, the plasma is unmagnetized (Magin and Degrez, 2004b). The approach followed
here can be generalized to derive transport properties sensitive to a magnetic field.

Finally, to simplify the notation we will indicate with S the set of all mixture com-
ponents, including free electrons and with H the set of heavy particles, i.e. the mixture
components minus the free electrons.

5.1 Boltzmann equation

The exact representation of the mixture state is not only impossible because it requires
the knowledge of velocity, position and internal state of every particle in the mixture,
but is also redundant for our continuum description. It seems therefore more practical
and convenient to use a statistical approach that, by its own nature, gives the “global”
behaviour of the system under investigation.

Consider a particle belonging to species i (for simplicity we assume it has no internal
degrees of freedom): its state is completely characterized by its position ~r and its velocity
~ci. The six-dimensional space having as components the three components of ~r and
the three components of ~ci is called the phase space. In the spirit of the continuum
description, it would be enough to have a function fi(~r,~ci, t) that gives the expected
amount of i species particles in an elementary volume d~rd~ci of the phase space. In other
words, Ni = fi(~r,~ci, t)d~rd~ci is the expected number of i species particles in the volume
element d~r located at ~r, whose velocities lies in the interval d~ci about velocity ~ci at time
t. Integration with respect to ~r and ~ci gives the total number of i species particles in the
system. Integration with respect to ~ci gives the the total number of i species particles in
the volume d~r and the number density ni of i species is this number divided by d~r:

ni(~r, t) =

∫
fi(~r,~ci, t)d~ci (50)

(the integration extends over the full velocity range). The partial density reads ρi = mini

where mi is the mass of the single species particle i.
If ϕi(~r,~ci, t) is a generic property for species i, function of the particle velocity, its

average value is:

ϕi(~r, t) =
1

ni(~r, t)

∫
ϕi(~r,~ci, t)fi(~r,~ci, t)d~ci (51)

For example average velocity of species i (the same as the one defined in section 2.1)
is:

~vi(~r, t) =
1

ni(~r, t)

∫
~cifi(~r,~ci, t)d~ci (52)

The mixture mass average velocity is identical to the one defined by Eq. 2. The difference
between the species velocity of particle i and the mixture average velocity is the peculiar
velocity of species i:

~Ci = ~ci − ~v

The peculiar velocity is linked with the thermal motion of the molecules: in a mixture
at rest, without macroscopic gradients, particles are still subject to Brownian motion
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and this motion is nothing else than the peculiar velocity. The average kinetic energy
associated with the peculiar velocity may be identified as the translational component of
the internal energy of each mixture component:

Ti(~r, t) =
1

3
2
kni

∫
1

2
miC

2
i fi(~r,~ci, t)d~ci (53)

In our case Ti = Te for free electrons and Ti = Th for all the remaining mixture compo-
nents.

In a gas under nonequilibrium conditions, gradients exist in one or more of the macro-
scopic physical properties of the system: composition, velocity, temperature. The gradi-
ents of these properties result in the molecular transport of mass, momentum and energy
through the mixture. The flux vector associated with the transport of the generic property
ϕi is:

~Φi(~r, t) =

∫
ϕi(~r,~ci, t)~Cifi(~r,~ci, t)d~ci (54)

We point out that the velocity with which ϕi is transported is the peculiar velocity ~Ci of
i species particle and not the total velocity ~ci = ~Ci + ~v. In effect we are considering the
transport of ϕi through the mixture and the mixture average velocity ~v is responsible for
the transport of ϕi with respect to a fixed reference, but not through the mixture, that
is the task of the peculiar velocity.

We notice that, once the distribution function is known, we can completely determine
the hydrodynamic state of the mixture, i.e. density velocity, energy and their respective
fluxes.

Therefore it is time to introduce Boltzmann equation which governs the i species
distribution function evolution:

∂fi

∂t
+ ~ci · ∇~rfi +

~Fi

mi

· ∇~ci
fi =

∑
j∈S

Jij(fi, fj) (55)

Or, in compact notation:

Di(fi) = Ji (56)

The left hand side is the streaming operator and gives the change of the distribution
function due to convection and the effect of the body forces ~Fi on the particles; the right
hand side is the collision operator and gives the change in the distribution function due to
the collisional processes happening into the flow (Chapman and Cowling, 1970; Ferziger
and Kaper, 1972; Hirschfelder et al., 1964).

The total rate of change of the generic ϕi(~r,~ci, t) property for species i is obtained
multiplying the Boltzmann equation (Eq. 55) by ϕi itself and integrating over ~ci: the
equation thus obtained is called the equation of change of the property ϕi (Chapman and
Cowling, 1970; Ferziger and Kaper, 1972; Hirschfelder et al., 1964). Using the compact
form of the Boltzmann equation it writes as:∫

ϕiDi(fi)d~ci =

∫
ϕiJid~ci = ni

(
∂ϕi

∂t

)
coll

(57)
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The term (
∂ϕi

∂t

)
coll

=
1

ni

∑
j∈S

∫
ϕi(~r,~ci, t)Jij(fi, fj)d~ci

is the rate of change of property ϕi due to particle collisions. The equation of change for
the mixture property ϕ = 1

n

∑
i∈S niϕi is obtained by summing up over all the species the

equation of change.
The mixture governing equations that have been presented in Sec. 2 can be obtained

from the equation of change (Mitchner and Kruger, 1973; Chapman and Cowling, 1970).

Species continuity. Identifying ϕi with the mass mi of species i, Eq. 57 gives the species
continuity equation (i.e. Eq. 7 of Sec. 2.2. We notice that in Eq. 7 the chemical
production term is included too).

Mixture momentum. Identifying now ϕi with the species momentum mi~ci and sum-
ming over all the species, the mixture momentum equation is recovered (i.e. Eq. 8 of
Sec 2.3). The change in momentum due to the collisional operator is zero because
of the principle of conservation of momentum during collisions.

Mixture energy. Finally identifying ϕi with the species total energy 1
2
mic

2
i and sum-

ming over the species the mixture energy equation is recovered (i.e. Eq. 11 of Sec. 2.4,
where also the contribution of species internal energy is taken into account). The
change in energy due to the collisional operator is zero too, because of the principle
of conservation of energy during collisions.

A comparison among the mixture equations obtained from the equations of change
and the ones presented in Sec. 2, allows one to do the following identifications:

Diffusion flux. The diffusion flux (Eq. 5) defined for the species continuity equation
(Eq. 7) is given by:

ρi
~Vi =

∫
mi

~Cifi(~r,~ci, t)d~ci (58)

Stress tensor. The pressure viscous tensor −p ¯̄I+¯̄τ in the momentum (Eq. 8) and energy
(Eq. 11) equations is given by the sum of the species momentum fluxes ¯̄Pi:

−p ¯̄I + ¯̄τ =
∑
i∈S

¯̄Pi =
∑
i∈S

∫
mi

~Ci ⊗ ~Cifi(~r,~ci, t)d~ci (59)

Where ¯̄I is the unit tensor.

Heat flux. The heat flux vector ~q in the energy equation (Eq. 11) is given by the sum
of the species heat fluxes ~qi:

~q =
∑
i∈S

~qi =
∑
i∈S

∫
1

2
miC

2
i
~Cifi(~r,~ci, t)d~ci (60)

As one can remark, the transport fluxes are function, among other things, of the distribu-
tion function fi. If the distribution function, in its turn, has a one to one correspondence
with the macroscopic variables characterizing the mixture, the governing equations be-
come self-contained, because transport fluxes can be expressed as suitable functions of
macroscopic variables.
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5.2 Chapman-Enskog method

The Chapman-Enskog method gives the transport fluxes (Eq. 58, 59, 60) as linear func-
tions of the macroscopic variable gradients through proportionality scalar quantities, the
transport coefficients. It is important to point out that the method is rigorously valid
for small Knudsen number and weak deviation from thermal equilibrium. We distinguish
between heavy particles, index h, and free electrons, index e. We allow heavy particles
temperature Th and electrons temperature Te to differ. The case of equal temperatures is
simply recovered by taking: Th = Te = T .

The distribution function is developed in a series expansion with respect to a small
perturbation parameter ε proportional to the Knudsen number (Chapman and Cowling,
1970; Ferziger and Kaper, 1972; Hirschfelder et al., 1964). Stopping the expansion to the
first two terms of the series one has for species i:

fCE
i = f

(0)
i + εf

(1)
i = f

(0)
i (1 + εφi) (61)

The approximate solution of the Boltzmann equation is obtained by inserting the series
expansion into Eq. 55 and equating the coefficients of equal powers of ε [for more details
see (Chapman and Cowling, 1970; Ferziger and Kaper, 1972; Hirschfelder et al., 1964)].
The expression for the zero order approximation f 0

i is:

f
(0)
i = ni

(
mi

2πkTi

) 3
2

e
−miC2

i
2kTi (62)

(We recall that in our case Ti = Te for free electrons and Ti = Th for all the remaining
mixture components). This expression is the Maxwell distribution function and is assumed
by the gas particles in case of thermal equilibrium. The equations we obtain sticking the
Maxwell distribution into the equation of change Eq. 57 are the Euler equations. They are
characterized by the absence of dissipation and therefore of transport fluxes, i.e. diffusion
flux and heat flux are identically zero and the stress tensor reduces to the thermodynamic
pressure p.

The perturbation term φi is solution of the following linear integral equation:

n2Ii (φ) = −f 0
i

[
n

ni

Θi
~Ci · ~di +

(
C 2

i − 5

2

)
~Ci · ∇ log Ti

+2 (1− δie)

(
~Ci ⊗ ~Ci −

C 2
i

3
¯̄I

)
: ∇~v

] (63)

The term Ii(φ) is a linearized collisional operator defined in (Magin and Degrez, 2004b).

The thermal nonequilibrium parameter Θ is defined as: Θi = Th/Ti. ~Ci is a non-
dimensional velocity that writes:

~Ci =

(
mi

2kTi

) 1
2

~Ci

The most general form of the unknown function φi is:

φi = − 1

n

[
~Ah

i · ∇ log(Th) + ~Ae
i · ∇ log(Te) + ¯̄Bi : ∇~v +

∑
j∈S

~Dj
i · ~dj

]
(64)
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~di is a vector of driving forces that reads:

~di =
∇pi

nkTh

− yip∇ log p

nkTh

+ (yiq − xiqi)
~E

kTh

(65)

where ~E is the electric field acting on charged particles. The driving forces are not linearly
independent: ∑

i∈S

~di = 0 (66)

If the approximate solution fCE
i = f 0

i (1 + εφi) is inserted into the equation of change
Eq. 57, the Navier-Stokes equations are obtained. The diffusion flux, the pressure viscous
tensor and the heat flux are obtained by computing the transport fluxes (Eqs. 58, 59, 60)
with the approximate value of the distribution function.

The unknown coefficients ~Ah
i , ~Ae

i ,
¯̄Bi and ~Dj

i entering the expression 64 for φi are
functions only of the peculiar velocities of mixture components and must take the form:

~Ah
i = Ah

i (Ci) ~Ci (67a)

~Ae
i = Ae

i (Ci) ~Ci (67b)

¯̄Bi = Bi (Ci)

(
~Ci ⊗ ~Ci −

C2
i

3
¯̄I

)
(67c)

~Dj
i = Dj

i (Ci) ~Ci (67d)

They are solution of the integral equations:

Ii

(
~D j
)

=
1

ni

f 0
i (δij − yi) Θi

~Ci (68a)

Ii

(
~A h
)

=
1

n
f 0

i (1− δie)

(
C 2

i − 5

2

)
~Ci (68b)

Ii

(
~A e
)

=
1

n
f 0

i δie

(
C 2

i − 5

2

)
~Ci (68c)

Ii

(
¯̄B
)

=
2

n
f 0

i (1− δie)

(
~Ci ⊗ ~Ci −

C 2
i

3
¯̄I

)
(68d)

The vectors ~Dj are not linearly independent and the constraint
∑

j yj
~Dj = 0 is imposed

in order to derive for diffusion fluxes symmetric expressions in agreement with Onsager’s
reciprocity relations (Ferziger and Kaper, 1972).

A closed form expression for Dj
i , Ah

i , Ae
i and Bi, solution of the respective integral equa-

tions, does not exist: an approximate solution is sought in the form of a finite polynomial
expansion. The Sonine polynomials, which have some useful orthogonality properties, are
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used (Chapman and Cowling, 1970; Ferziger and Kaper, 1972).

~Ah
i = −

√
mi

2kBTi

∑
p∈P

ah
i,p (ξ) S

(p)
3
2

(
C 2

i

)
~Ci (69a)

~Ae
i = −

√
mi

2kBTi

∑
p∈P

ae
i,p (ξ) S

(p)
3
2

(
C 2

i

)
~Ci (69b)

¯̄Bi =
∑
p∈P

bi,p (ξ) S
(p)
5
2

(
C 2

i

)(
~Ci ⊗ ~Ci −

C 2
i

3
¯̄I

)
(69c)

~Dj
i =

√
mi

2kBTi

∑
p∈P

dj
i,p (ξ) S

(p)
3
2

(
C 2

i

)
~Ci (69d)

where P = {0, . . . , ξ − 1}. The accuracy ξ of the approximation depends on how many
terms are kept in the polynomial expansion. The sequence is monotonically increasing and
converges to the exact solution of the integro-differential equation and so the transport
properties computed with the Sonine expansion tend asymptotically to the properties
computed with the exact Chapman-Enskog procedure (Ferziger and Kaper, 1972). In
the remaining, when talking about the order of approximation in transport properties
evaluation, we will mean how many terms are retained in the Sonine polynomial expan-
sion. Substituting Eq. 69d into the integral equation (68a), Eq. 69a into the integral
equation (68b), and Eq. 69b into the integral equation (68c), multiplying by the vec-

tor S
(p)
3/2 (C 2

i ) ~Ci, and integrating over ~ci, the transport systems for diffusion and heat
transfer coefficients are obtained. Similarly, substituting Eq. 69c into the integral equa-

tion 68d, multiplying by the tensor S
(p)
5/2 (C 2

i )
(

~Ci ⊗ ~Ci − C 2
i

¯̄I/3
)

and integrating over

~ci, the transport system for stress tensor coefficients is obtained.
Here we will not go into the details of such a process; we refer to Refs. (Hirschfelder

et al., 1964; Chapman and Cowling, 1970; Ferziger and Kaper, 1972; Magin and Degrez,
2004b). In the next sections instead we will give the final expressions for diffusion flux,
stress tensor and heat flux along with the linear systems one need to solve in order to
compute the associated transport coefficients.

5.3 Diffusion flux

The diffusion flux is obtained by sticking fi = fCE
i into Eq. 58; the contribution of the

Maxwellian part of the distribution function, f 0
i , is zero and also the contribution of the

coefficient ¯̄Bi of φi. The final expression is:

ρi
~Vi = −ρi

(∑
j∈S

Dij
~dj + Dh

T i∇ log Th + De
T i∇ log Te

)
(70)

Dij are the multicomponent diffusion coefficients, they are symmetric, Dij = Dji and
Dii > 0 and the matrix formed by the coefficients is singular. Dh

T i and De
T i are the thermal

diffusion coefficients. We point out that Dij, Dh
T i and De

T i are not linearly independent:∑
i∈S

yiDij = 0,
∑
i∈S

yiD
h
T i = 0,

∑
i∈S

yiD
e
T i = 0
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Instead of the thermal diffusion coefficients we can use the thermal diffusion ratios:∑
j∈S

Dijk
h
Tj = Dh

T i (71a)∑
j∈S

Dijk
e
Tj = De

T i (71b)

∑
j∈H

kh
Tj +

Te

Th

kh
Te = 0 (71c)

∑
j∈H

ke
Tj +

Te

Th

ke
Te = 0 (71d)

Constraints 71c and 71d are introduced because the matrix of multicomponent diffusion
coefficients is singular. The diffusion flux now reads:

ρi
~Vi = −ρi

∑
j∈S

(
Dij

~dj + kh
Tj∇ log Th + ke

Tj∇ log Te

)
(72)

The multicomponent diffusion coefficients Dij are computed by means of the solution of
suitable linear systems. If the Sonine expansion is of order ξ one needs to solve NS systems
each one of dimensions ξNS by ξNS. The effective number of operations can be reduced
by taking into account the symmetry property of the Dij’s, but it is still a considerable
computational load. The thermal diffusion coefficients are computed from the solution of
a linear system of dimensions (ξ + 1)NS by (ξ + 1)NS.

Due to the high computational cost associated with the evaluation of the multicom-
ponent and thermal diffusion coefficients, it is customary in literature to resort to some
kind of Fick’s law approximation. The diffusion flux is replaced by an expression of the
kind:

ρi
~Vi = −ρDm

i ∇xi

where Dm
i is a suitable multicomponent binary diffusion coefficient. This approximation

does not satisfy the constraint of mass conservation, i.e. Eq. 6, unless all the Dm
i coeffi-

cients are equal, and can give very false values for heat flux (Sutton and Gnoffo, 1998).
They were probably justified in the early days when computational power was very weak,
but not nowadays and they have to be discarded. A more sophisticated approach is due
to Ramshaw (Ramshaw, 1990) and is equivalent to the Fick’s law plus a correction term
to satisfy the mass conservation property. This approach is quite accurate for heat flux
determination, but still not satisfactory from the point of view of a strict adherence to
kinetic theory.

Stefan-Maxwell equations

In this lecture we propose to use the exact kinetic theory approach to compute the diffusion
fluxes, but instead of using Eq. 72 we reverse it; i.e. we express the diffusion driving forces
in function of the diffusion velocities. The new equations we obtain are the Stefan-Maxwell
equations and they read: ∑

j∈H

Ĝ
~V
ij

~Vj = −~d′i +
κi

κe

~d′e, i ∈ H (73)
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The Stefan-Maxwell equations keep the same structure independently of the Sonine ap-
proximation order. The expression for the coefficients Ĝ

~V
ij is given in Appendix A. The

modified driving forces and the electric field coefficients are:

~d′i =
∇pi

nkTh

− yip

nkBTh

∇ log p + kh
T i (ξ)∇ log Th + ke

T i (ξ)
Ti

Te

∇ log Te (74a)

κi =
1

kBTh

(xiqi − yiq) (74b)

The modified driving forces and electric field coefficients are not linearly independent:∑
j∈S

~d′j = 0,
∑

j∈S κj = 0. It is important to point out that the Stefan-Maxwell equations
are not linearly independent and have to be supplied with the mass conservation constraint
(see Eq. 6):

∑
i∈H yi

~Vi = 0. The electron diffusion velocity is deduced from the ambipolar

constraint: ~Ve = −
∑

j∈H xjqj
~Vj/(xeqe). The ambipolar electric field is given by ~E =

~d′e/κe.

5.4 Heat flux

Due to the small electron heavy particles mass-ratio, the contributions of heavy particles
and free electrons to the heat flux vector can be split in two separate parts. This is a fortu-
nate circumstance because in order to compute accurate heat flux values a higher number
of terms in the Sonine expansion should be taken for electron contribution compared to
heavy particle one (Devoto, 1966, 1967).

5.4.1 Heavy particle heat flux

The heavy particles heat flux reads:

~qh = −λh∇Th +
∑
i∈H

hiρi
~Vi + nkTh

∑
i∈H

kh
T i

~Vi (75)

The translational heavy particles thermal conductivity is given, in the second Sonine
approximation denoted by λ(2), by the solution of the system:∑

j∈H

Gλh
ij αλh

j = xi, i ∈ H (76a)

λh(2) =
∑
j∈H

αλh
j xj (76b)

Heavy particle thermal diffusion ratios are then obtained as follows:

kh
T i (2) =

5

2

∑
j∈H

Λ01
ij αλh

j , i ∈ H (77)

where
∑

j∈H kh
Tj = 0 and kh

Te = 0. It is important to notice that the translational thermal
conductivity and thermal diffusion ratios of heavy particles do not depend on electrons.
The expressions of the coefficients Gλh

ij and Λ01
ij are given in the Appendix A. The term∑

i∈H hiρi
~Vi accounts for the heat flux due to the transfer of particles enthalpy, hi, by

means of diffusion.
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5.4.2 Electron heat flux

The electrons heat flux reads:

~qe = −λe∇Te + heρe
~Ve + nkTh

∑
i∈H

ke
T i

~Vi (78)

The electron thermal conductivity reads in the second and third Sonine approximations:

λe(2) =
x2

e

Λ11
ee

(79a)

λe(3) =
x2

eΛ
22
ee

Λ11
eeΛ

22
ee − (Λ12

ee)
2 (79b)

Electron thermal diffusion ratios ke
T i are obtained from:

ke
T i (2) =

5

2

Te

Th

xe
Λ01

ie

Λ11
ee

(80a)

ke
T i (3) =

5

2

Te

Th

xe
Λ01

ie Λ22
ee − Λ02

ie Λ12
ee

Λ11
eeΛ

22
ee − (Λ12

ee)
2 (80b)

where
∑

j∈H ke
Tj + ke

TeTe/Th = 0. Expressions for the various coefficients are given in
Appendix A.

5.4.3 Eucken correction

As already mentioned in Sec. 5, the particles internal energy has not been taken into ac-
count in the derivation of the different transport fluxes. Nevertheless it is an experimental
evidence that internal energy (Ferziger and Kaper, 1972) affects the heat flux.

The first obvious effect is that internal energy has to be included in the transfer of
particles enthalpy by means of diffusion; the second is that internal energy modes change
the value of thermal conductivity (Hirschfelder et al., 1964; Ferziger and Kaper, 1972).
In the heavy particles heat flux (Eq. 75) one needs to add to the translational thermal
conductivity λh the “internal” thermal conductivity that can be split into contributions
due to rotational (λR), vibrational (λV ) and electronic (λE) internal energy modes. It is
clear that rotational and vibrational contributions have to be taken into account only for
molecules (symbol Hp being the molecules set). Using the Eucken correction these new
contributions read:

λR =
∑
i∈Hp

ρicR,i∑
j∈H xj/Dij

(81a)

λV =
∑
i∈Hp

ρicV,i∑
j∈H xj/Dij

(81b)

λE =
∑
i∈H

ρicE,i∑
j∈H xj/Dij

(81c)

where cR,i, cV,i, and cE,i are the rotational, vibrational, and electronic species specific
heats per unit mass. The coefficients Dij are the so called binary diffusion coefficients
whose expression is given in Appendix A.
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The final expression for heavy particles thermal conductivity becomes:

~qh = −(λh + λR + λV + λE)∇Th +
∑
i∈H

hiρi
~Vi + nkTh

∑
i∈H

kh
T i

~Vi (82)

5.4.4 LTE heat flux
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Figure 9: Heat flux components of air, per temperature gradient.

The heat flux components per temperature gradient are compared in Figs. 9 and 10.
The diffusion heat flux

∑
j∈S ρjhj

~Vj yields the dominant contribution for temperature
ranges 2500-9000 and 11 000-15 000 K for air, and 2000-4500 and 6000-15 000 K for
carbon dioxide. The peaks correspond to the dissociation peaks (O2 and N2 for air,
CO2 and CO for carbon dioxide), and ionization peaks of atoms (N and O for air, C
and O for carbon dioxide). Diffusion velocities are deduced from Eq. 73 in the second
Laguerre-Sonine approximation. An electric field, gradients of pressure, temperature,
and concentration generate mass fluxes. We envisage the effect of a thermal gradient
on the diffusion velocities, in relation with variations of the equilibrium composition and
ambipolar electric field. The influence of an external electric field or pressure gradient
is not considered. Therefore, the driving forces read di = (∂xi/∂T )∇T − κiE, where
E is the ambipolar field. The electron thermal conductivity λe given in Eq. 79 becomes
significant beyond 7000 K. The second Laguerre-Sonine approximation underestimates the
magnitude of λe, the third order approximation is required. The heavy particle thermal
conductivity λh(2) and internal thermal conductivity λR + λV + λE are computed using
Eqs. 76 and 81. Their influence is major below 2000 K and between the peaks of diffusion
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heat flux. The thermal diffusion heat flux p
∑

j∈S [k
h
Tj(2) + ke

Tj(3)] Vj weakly contributes
to the total heat flux in LTE plasmas.
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Figure 10: Heat flux components of carbon dioxide, per temperature gradient.

5.5 Stress tensor

The stress tensor expression is:

¯̄τ = µ
[
∇~v + (∇~v)T

]
− 2

3
µ∇ · ~v ¯̄I (83)

The shear viscosity coefficient µ is computed, in the first Sonine approximation,as solution
of the system:

∑
j∈H

Gµ
ijα

µ
j = xi, i ∈ H (84a)

µ(1) =
∑
j∈H

αµ
j xj (84b)

We notice that the shear viscosity does not depend on electrons. The expression of the
coefficients Gµ

ij is given in Appendix A.
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Figure 11: Shear viscosity at 1 atm: air, −− carbon dioxide.

If gas particles have internal energy a new coefficient appears in Eq. 83, the volume
viscosity η which multiplies the divergence of velocity term. Volume viscosity is linked
with the time-lag necessary to equilibrate internal and translational energies of molecules
and results in three additional normal stress components. In multicomponent flow mod-
eling it is usually neglected: the main reason being that the necessary data to correctly
computing it are lacking. Experimental results on acoustic waves absorption show that µ
and η are of the same order, at least at ambient temperature. Neglecting η has thus no
justification a priori. What eventually can be neglected is the influence of the term η∇·~v ¯̄I
on the flow structure. For low Mach number (without strong thermal expansion) flows
this can be a good assumption, but for high speed compressible flows it is questionable.
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6 CFD example: OREX case

In this section we will show an example of computation of a hypersonic flow field. The
main point is to demonstrate the effect of wall catalycity and diffusion fluxes modeling
on the heat flux experienced by the flying vehicle. The physico-chemical models used are
the ones described in the previous sections.

The Orbital Reentry Experiment (OREX) vehicle is a 50o spherically blunted cone
with a nose radius of 1.35 m and an overall base diameter of 3.4 m; the geometry is shown
in detail in Fig. 12. The nose cap is made of a monocoque Carbon-Carbon (C/C) material
coated with Silicon-Carbide (SiC).

We compare here the computed heat flux in the stagnation region with the one in-
ferred from the temperature measurement of the nose cap back surface. The wall tem-
perature is not uniform on the OREX vehicle heat shield and its distribution is shown
in Fig. 13 (Gupta et al., 1996). The peak temperature value is located at the stagnation
point and it is equal to 1458 K. The computations have been performed for an altitude of
56.9 km, which corresponds approximately to the peak heating situation. The freestream
conditions are: p∞ = 23.7 Pa, T∞ = 248 K, M∞ = 17.55. The axisymmetric computa-
tional grid has 65 by 90 cells and it is suitably refined next to the wall and in the shock
region to improve both accuracy and stability of the computations. The von Karman In-
stitute code Cosmic (Barbante, 2001) has been used for the computation. Computations
have been performed with two different air nonequilibrium chemistry models, air-5 and
air-7 (see Sec. 4.3) and the reaction rates set of Gupta (Gupta et al., 1990). Computed
heat fluxes are practically identical for the two mixtures.

Figure 12: OREX vehicle geometry (from Ref. (Kurotaki, 2000), lengths in mm.)
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Figure 13: OREX vehicle wall temperature distribution

In Fig. 14 the heat flux on the forebody, computed for different values of the wall
catalycity, is shown. The wall heterogeneous catalytic reactions are assumed to be
N + N → N2 and O + O → O2. The recombination probability γi (see Eq. 44) is as-
sumed to be equal for both wall reactions. Shown are also the heat flux inferred flight
value in the stagnation point and the heat flux distribution computed by Yamamoto (as
reported in Ref. (Gupta et al., 1996)) for a noncatalytic wall. The stagnation point heat
flux range is between 29 W

cm2 for a noncatalytic wall and 61 W
cm2 for a fully catalytic wall.

The heat flux inferred flight value is equal to 39 W
cm2 , the Yamamoto computation to 33 W

cm2 .
We observe that our heat flux distribution for a noncatalytic wall and the Yamamoto’s
one have the same qualitative behaviour. The Gupta’s computation of Ref. (Gupta et al.,
1996) (not shown here) has a stagnation point heat flux value of 26 W

cm2 (for noncatalytic
wall). We would like to point out the dramatic increase of the heat flux load due to wall
catalycity effects: it doubles going from a noncatalytic wall to a fully catalytic one. It is
also interesting to note that, even for a low catalytic material as the one used on the nose
cap (γi ≈ 3 10−3), the catalytic activity in enough to raise the heat flux by more than
30%. This means that for hypersonic vehicles it is important to develop materials with
as low catalycity as possible.

The Stefan-Maxwell equations (Eq. 73) are used to model the diffusion fluxes; by
derivation they are equivalent to the exact (in the Chapman-Enskog approximation) dif-
fusion equations (Eq. 70). In literature it is customary instead to use some kind of Fick’s
law approximation: we would like to briefly point out the effect of different diffusion
formulations on the computed heat flux.

The Fick’s law approximation (Sutton and Gnoffo, 1998) can be expressed in two
different ways; one where the driving force is the mass fraction gradient (hereafter called
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Figure 14: OREX vehicle heat flux for different values of wall catalycity

mass fraction Fick’s law) and one where the driving force is the mole fraction gradient
(hereafter called mole fraction Fick’s law). They read respectively:

~Ji = −ρDim∇yi (85)

where Dim = (1− xi)/
∑Ns

j=1,j 6=i
xj

Dij
; and

~Ji = −ρ
Mi

M
D̄im∇xi (86)

where D̄im = (1 − yi)/
∑Ns

j=1,j 6=i
xj

Dij
. Such a formulation, although exact for a binary

mixture, is incorrect for a multicomponent one (NS ≥ 3) because the mass conservation

constraint, i.e.
∑NS

i=1
~Ji = 0, is not satisfied unless all the coefficients Dim or D̄im are equal,

which is not true in general.
To overcome such a discrepancy Ramshaw (Ramshaw, 1990) has proposed a different

formulation that reads:

~Ji = −ρ
Mi

M
Dim∇xi + yi

Ns∑
j=1

ρ
Mj

M
Djm∇xj (87)

In practice it is equivalent to a Fick’s law formulation plus a correction term that is added
to satisfy the mass conservation constraint.

Fundamentals of Hypersonic Flight – 
Properties of High Temperature Gases 

RTO-EN-AVT-116 5 - 45 

 

 



In order to assess the effect of diffusion modeling on the computed solution, we cal-
culate the OREX case with a recombination probability γi equal to 10−3 using the two
Fick’s law formulations and the Ramshaw one in addition to the Stefan-Maxwell.

In Fig. 15 the computed heat flux is shown for the OREX case. The lowest heat flux
value is given by mole fraction Fick’s law (Eq. 86), the highest by mass fraction Fick’s law
(Eq. 85). The difference with respect to the Stefan-Maxwell value is (in the stagnation
point) of 5.8 % for the former and of 2 % for the latter. The Ramshaw formulation predicts
a stagnation point heat flux that is 3.4 % lower than the Stefan-Maxwell one.

The trends predicted here agree with the ones of Ref. (Sutton and Gnoffo, 1998),
where it is shown that, for higher freestream Mach number or for higher catalytic activity
materials, the difference in computed heat flux can grow up to 40− 50 %.
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Figure 15: Heat flux for different diffusion models on OREX vehicle

Concerning the computational cost we found out that Fick’s law approximation is
25 % faster than Stefan-Maxwell and Ramshaw 14 % faster. From the previous discussion
is clear that Fick’s law approximation has to be discarded for diffusion modeling, leaving
Ramshaw and Stefan-Maxwell as the only acceptable choices. Our suggestion is as follows:
Ramshaw formulation is used in the transient phase of the computation to take advantage
of the lower cost, Stefan-Maxwell formulation is switched on in the last phase of the
computation to converge to the final solution.
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A Transport systems

The transport systems are expressed in terms of binary diffusion coefficients Dij, collision

integral ratios A?
ij, B?

ij, C?
ij, i, j ∈ H, and reduced collision integrals Q̄

(1,s)
ie (s = 1, . . . , 5),

Q̄
(2,2)
ee , Q̄

(2,3)
ee , Q̄

(2,4)
ee defined by Magin and Degrez (2004a). The kinetic data used to

compute the transport coefficients are given by Capitelli et al. (2002) for air and Magin
et al. (2002) for carbon dioxide.
• Heavy-particle subsystem, i, j ∈ H

Gµ
ij = Gµ

ji =
1

Th

H00
ij =

xixj

nDij

1

(mi + mj)

(
6

5
A?

ij − 2

)
, i 6= j, (88a)

Gµ
ii =

1

Th

H00
ii =

∑
j∈H
j 6=i

xixj

nDij

1

(mi + mj)

(
6

5

mj

mi

A?
ij + 2

)
+

x2
i

ηi

, (88b)

Gλh
ij = Gλh

ji = Λ11
ij =

1

25kB

xixj

nDij

mimj

(mi + mj)
2

(
16A?

ij + 12B?
ij − 55

)
, i 6= j, (88c)

Gλh
ii = Λ11

ii =
1

25kB

∑
j∈H
j 6=i

xixj

nDij

1

(mi + mj)
2

(
30m2

i + 25m2
j − 12m2

jB
?
ij + 16mimjA

?
ij

)
+

4

15kB

x2
i mi

ηi

, (88d)

Λ01
ij = Λ10

ji =
1

25kB

xixj

nDij

mi

(mi + mj)

(
12C?

ij − 10
)
, i 6= j, (88e)

Λ01
ii = Λ10

ii = − 1

25kB

∑
j∈H
j 6=i

xixj

nDij

mj

(mi + mj)

(
12C?

ij − 10
)
, (88f)

Ĝ
~V
ij = Ĝ

~V
ji = −xixj

Dij

(1 + ϕij) , i 6= j, (88g)

Ĝ
~V
ii =

∑
j∈H
j 6=i

xixj

Dij

(1 + ϕij) . (88h)

Correction functions of the Stefan-Maxwell equation are obtained in various Laguerre-
Sonine approximations: ∑

k∈H

Gλh
ik βkj,1 (2) = −2Λ01

ji , i, j ∈ H, (89a)

ϕij(1) = 0, (89b)

ϕij(2) = −25

8
nkB

Dij

xixj

∑
k∈H

Λ01
ik βkj,1 (2) . (89c)

• Heavy-particle electron subsystem, i ∈ H

Λ01
ie = Λ10

ei = −64xexi

75kB

Te

Th

√
me

2πkBTe

(
5

2
Q̄

(1,1)
ie − 3Q̄

(1,2)
ie

)
, (90a)

Λ02
ie = Λ20

ei = −64xexi

75kB

Te

Th

√
me

2πkBTe

(
35

8
Q̄

(1,1)
ie − 21

2
Q̄

(1,2)
ie + 6Q̄

(1,3)
ie

)
. (90b)
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• Electron subsystem

Λ01
ee = Λ10

ee =
64xe

75kB

√
me

2πkBTe

∑
j∈H

xj

(
5

2
Q̄

(1,1)
ej − 3Q̄

(1,2)
ej

)
, (91a)

Λ11
ee =

64xe

75kB

√
me

2πkBTe

[∑
j∈H

xj

(
25

4
Q̄

(1,1)
ej − 15Q̄

(1,2)
ej + 12Q̄

(1,3)
ej

)
+xe

√
2Q̄(2,2)

ee

]
, (91b)

Λ02
ee = Λ20

ee =
64xe

75kB

√
me

2πkBTe

∑
j∈H

xj

(
35

8
Q̄

(1,1)
ej − 21

2
Q̄

(1,2)
ej + 6Q̄

(1,3)
ej

)
, (91c)

Λ12
ee = Λ21

ee =
64xe

75kB

√
me

2πkBTe

[∑
j∈H

xj

(
175

16
Q̄

(1,1)
ej − 315

8
Q̄

(1,2)
ej + 57Q̄

(1,3)
ej

−30Q̄
(1,4)
ej

)
+ xe

√
2

(
7

4
Q̄(2,2)

ee − 2Q̄(2,3)
ee
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, (91d)

Λ22
ee =

64xe

75kB

√
me

2πkBTe

[∑
j∈H

xj

(
1225

64
Q̄

(1,1)
ej − 735

8
Q̄

(1,2)
ej +
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2
Q̄

(1,3)
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ej

+90Q̄
(1,5)
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)
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√
2

(
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16
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. (91e)
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